Resistencia y beneficios ambientales de cenizas agrícolas y fibras naturales en el concreto
DOI:
https://doi.org/10.37787/mv6d2q17Palabras clave:
Cenizas agrícolas, fibras naturales, propiedades del concreto, sustitución de cemento, fibras de celulosaResumen
Este artículo analiza el uso de residuos agrícolas y fibras naturales como materiales alternativos en la producción de concreto con el objetivo de reducir el consumo de cemento y el impacto ambiental. Se realizó una revisión sistemática de estudios publicados entre 2017 y 2025, en inglés y español, obtenidos de la base de datos Scopus y enfocados en las áreas de ingeniería y tecnología de materiales. Los residuos agrícolas, como la ceniza de cáscara de arroz con más del 70 % de óxidos puzolánicos, permiten reemplazar hasta el 20 % del cemento y mejorar la resistencia a la compresión en un 30 %. Por otro lado, las fibras naturales como la celulosa, kenaf y aguja de pino rojo incrementan la resistencia mecánica y la durabilidad del concreto. En particular, la adición de 0,5 % de fibra de celulosa reduce la penetración de agua en un 24 %, la permeabilidad en un 42 % y el ancho de grietas en un 85 %. Estos resultados evidencian que el uso de materiales de origen natural no solo mejora el desempeño del concreto, sino que a su vez contribuye a una construcción más sostenible.
Referencias
Abdalla, J. A., Hawileh, R. A., Bahurudeen, A., Jyothsna, G., Sofi, A., Shanmugam, V., & Thomas, B. (2023). A comprehensive review on the use of natural fibers in cement/geopolymer concrete: A step towards sustainability. Case Studies In Construction Materials, 19, e02244. https://doi.org/10.1016/j.cscm.2023.e02244
Abellan-Garcia, J., Martinez, D. M., Khan, M. I., Abbas, Y. M., & Pellicer-Martínez, F. (2023). Environmentally friendly use of rice husk ash and recycled glass waste to produce ultra-high-performance concrete. Journal Of Materials Research And Technology, 25, 1869-1881. https://doi.org/10.1016/j.jmrt.2023.06.041
Ahmad, J., Arbili, M. M., Alabduljabbar, H., & Deifalla, A. F. (2023). Concrete made with partially substitution corn cob ash: A review. Case Studies In Construction Materials, 18, e02100. https://doi.org/10.1016/j.cscm.2023.e02100
Ahsan, M. B., & Hossain, Z. (2018). Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry. Construction And Building Materials, 178, 1-9. https://doi.org/10.1016/j.conbuildmat.2018.05.101
Akinyemi, A. B., Omoniyi, E. T., & Onuzulike, G. (2020). Effect of microwave assisted alkali pretreatment and other pretreatment methods on some properties of bamboo fibre reinforced cement composites. Construction And Building Materials, 245, 118405. https://doi.org/10.1016/j.conbuildmat.2020.118405
Ali, D. M., Chin, S. C., Bao, C., & Gimbun, J. (2024). Enhancement of reinforced concrete durability and performance by bamboo and basalt fibres. Physics And Chemistry Of The Earth Parts A/B/C, 103572. https://doi.org/10.1016/j.pce.2024.103572
Basu, P., Kumar, R., & Das, M. (2023). Natural and manmade fibers as sustainable building materials. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2023.07.222
Bheel, N., Chohan, I. M., Alwetaishi, M., Waheeb, S. A., & Alkhattabi, L. (2024a). Sustainability assessment and mechanical characteristics of high strength concrete blended with marble dust powder and wheat straw ash as cementitious materials by using RSM modelling. Sustainable Chemistry And Pharmacy, 39, 101606. https://doi.org/10.1016/j.scp.2024.101606
Bheel, N., Kumar, S., Kirgiz, M. S., Ali, M., Almujibah, H. R., Ahmad, M., & Gonzalez-Lezcano, R. A. (2024b). Effect of wheat straw ash as cementitious material on the mechanical characteristics and embodied carbon of concrete reinforced with coir fiber. Heliyon, 10(2), e24313. https://doi.org/10.1016/j.heliyon.2024.e24313
Cogurcu, M. T. (2022). Investigation of mechanical properties of red pine needle fiber reinforced self-compacting ultra high performance concrete. Case Studies In Construction Materials, 16, e00970. https://doi.org/10.1016/j.cscm.2022.e00970
Gamage, N., Patrisia, Y., Gunasekara, C., Law, D. W., Houshyar, S., & Setunge, S. (2024). Shrinkage induced crack control of concrete integrating synthetic textile and natural cellulosic fibres: Comparative review analysis. Construction And Building Materials, 427, 136275. https://doi.org/10.1016/j.conbuildmat.2024.136275
Gao, X., Zhu, D., Fan, S., Rahman, M. Z., Guo, S., & Chen, F. (2022). Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: a review. Journal Of Materials Research And Technology, 19, 1162-1190. https://doi.org/10.1016/j.jmrt.2022.05.077
Gavioli, L. M., Mármol, G., Lima, C. G., Teixeira, R. S., & Rossignolo, J. A. (2024). Comparative Performance of M-S-H Cement vs. Portland Cement in Fiber Cement Incorporating Bamboo Leaf Ash and Cellulosic Fibers. Journal Of Building Engineering, 91, 109644. https://doi.org/10.1016/j.jobe.2024.109644
Gouda, K. N., Babu, S. V., & Syed, A. B. (2023). Concrete making using salt water instead of fresh water. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2023.04.409
Gudainiyan, J., & Kishore, K. (2023). A review on cement concrete strength incorporated with agricultural waste. Materials Today Proceedings, 78, 396-402. https://doi.org/10.1016/j.matpr.2022.10.179
Hasan, K. F., Champramary, S., Hasan, K. N. A., Indic, B., Ahmed, T., Pervez, M. N., Horváth, P. G., Bak, M., Sándor, B., Hofmann, T., Tolvaj, L., Horváth, A., Kóczán, Z., Sipos, G., Alpár, T., & Bejó, L. (2023). Eco-friendly production of cellulosic fibers from Scots pine wood and sustainable nanosilver modification: A path toward sustainability. Results In Engineering, 19, 101244. https://doi.org/10.1016/j.rineng.2023.101244
Hasan, N. M. S., Shaurdho, N. M. N., Basit, M. A., Paul, S. C., Sobuz, M. H. R., & Miah, M. J. (2023). Assessment of the rheological and mechanical properties of palmyra fruit mesocarp fibre reinforced eco-friendly concrete. Construction And Building Materials, 407, 133530. https://doi.org/10.1016/j.conbuildmat.2023.133530
Ja’e, I. A., Salih, A. R., Syamsir, A., Min, T. H., Itam, Z., Amaechi, C. V., Anggraini, V., & Sridhar, J. (2023). Experimental and predictive evaluation of mechanical properties of kenaf-polypropylene fibre-reinforced concrete using response surface methodology. Developments In The Built Environment, 16, 100262. https://doi.org/10.1016/j.dibe.2023.100262
Jha, P., Sachan, A., & Singh, R. (2021). Agro-waste sugarcane bagasse ash (ScBA) as partial replacement of binder material in concrete. Materials Today Proceedings, 44, 419-427. https://doi.org/10.1016/j.matpr.2020.09.751
Jin, Z., Mao, S., Zheng, Y., & Liang, K. (2023). Pre-treated corn straw fiber for fiber-reinforced concrete preparation with high resistance to chloride ions corrosion. Case Studies In Construction Materials, 19, e02368. https://doi.org/10.1016/j.cscm.2023.e02368
Kareem, M., Raheem, A., Oriola, K., & Abdulwahab, R. (2022). A review on application of oil palm shell as aggregate in concrete - Towards realising a pollution-free environment and sustainable concrete. Environmental Challenges, 8, 100531. https://doi.org/10.1016/j.envc.2022.100531
Ma, W., Qin, Y., Li, Y., Chai, J., Zhang, X., Ma, Y., & Liu, H. (2020). Mechanical properties and engineering application of cellulose fiber-reinforced concrete. Materials Today Communications, 22, 100818. https://doi.org/10.1016/j.mtcomm.2019.100818
Maglad, A. M., Amin, M., Zeyad, A. M., Tayeh, B. A., & Agwa, I. S. (2023a). Engineering properties of ultra-high strength concrete containing sugarcane bagasse and corn stalk ashes. Journal Of Materials Research And Technology, 23, 3196-3218. https://doi.org/10.1016/j.jmrt.2023.01.197
Meng, C., Li, W., Cai, L., Shi, X., & Jiang, C. (2020). Experimental research on durability of high-performance synthetic fibers reinforced concrete: Resistance to sulfate attack and freezing-thawing. Construction And Building Materials, 262, 120055. https://doi.org/10.1016/j.conbuildmat.2020.120055
Mostafa, S. A., Tayeh, B. A., & Almeshal, I. (2022). Investigation the properties of sustainable ultra-high-performance basalt fibre self-compacting concrete incorporating nano agricultural waste under normal and elevated temperatures. Case Studies In Construction Materials, 17, e01453. https://doi.org/10.1016/j.cscm.2022.e01453
Nduka, D. O., Olawuyi, B. J., Ajao, A. M., Okoye, V. C., & Okigbo, O. M. (2022). Mechanical and durability property dimensions of sustainable bamboo leaf ash in high-performance concrete. Cleaner Engineering And Technology, 11, 100583. https://doi.org/10.1016/j.clet.2022.100583
Padavala, S. S. A. B., Dey, S., Veerendra, G., & Manoj, A. V. P. (2024). Experimental study on concrete by partial replacement of cement with fly ash and coarse aggregates with palm kernel shells (Pks) and with addition of hybrid fibers. Chemistry Of Inorganic Materials, 2, 100033. https://doi.org/10.1016/j.cinorg.2024.100033
Paul, S. C., Mbewe, P., Kong, S., & Šavija, B. (2019). Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries. Materials, 12(7), 1112. https://doi.org/10.3390/ma12071112
Pham, T. M. (2025). Fibre-reinforced concrete: state-of-the-art-review on bridging mechanism, mechanical properties, durability, and eco-economic analysis. Case Studies In Construction Materials, e04574. https://doi.org/10.1016/j.cscm.2025.e04574
Rajkohila, A., Chandar, S. P., & Ravichandran, N. P. T. (2024). Assessing the effect of natural fiber on mechanical properties and microstructural characteristics of high strength concrete. Ain Shams Engineering Journal, 102666. https://doi.org/10.1016/j.asej.2024.102666
Ramakrishna, J., & Gopi, R. (2023). Experimental investigation on partial replacement of cement and coarse aggregate by rice husk ash and steel slag in concrete. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2023.08.340
Roselló, J., Soriano, L., Santamarina, M. P., Akasaki, J. L., Monzó, J., & Payá, J. (2017). Rice straw ash: A potential pozzolanic supplementary material for cementing systems. Industrial Crops And Products, 103, 39-50. https://doi.org/10.1016/j.indcrop.2017.03.030
Salem, S., Hamdy, Y., Abdelraouf, E., & Shazly, M. (2022). Towards sustainable concrete: Cement replacement using Egyptian cornstalk ash. Case Studies In Construction Materials, 17, e01193. https://doi.org/10.1016/j.cscm.2022.e01193
Singh, H., & Gupta, R. (2020a). Cellulose fiber as bacteria-carrier in mortar: Self-healing quantification using UPV. Journal Of Building Engineering, 28, 101090. https://doi.org/10.1016/j.jobe.2019.101090
Singh, H., & Gupta, R. (2020b). Influence of cellulose fiber addition on self-healing and water permeability of concrete. Case Studies In Construction Materials, 12, e00324. https://doi.org/10.1016/j.cscm.2019.e00324
Thomas, B. S., Yang, J., Mo, K. H., Abdalla, J. A., Hawileh, R. A., & Ariyachandra, E. (2021). Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: A comprehensive review. Journal Of Building Engineering, 40, 102332. https://doi.org/10.1016/j.jobe.2021.102332
Wang, X., Jin, Y., Ma, Q., & Li, X. (2024). Performance and mechanism analysis of natural fiber-reinforced foamed concrete. Case Studies In Construction Materials, 21, e03476. https://doi.org/10.1016/j.cscm.2024.e03476
Wei, Y., Song, C., Chen, B., & Ahmad, M. R. (2019). Experimental investigation on two new corn stalk biocomposites based on magnesium phosphate cement and ordinary Portland cement. Construction And Building Materials, 224, 700-710. https://doi.org/10.1016/j.conbuildmat.2019.07.100
Wu, H., Shen, A., Ren, G., He, Z., Wang, W., & Ma, B. (2024). An experimental investigation and optimization of the properties of concrete containing cellulose fiber based on system theory. Construction And Building Materials, 411, 134463. https://doi.org/10.1016/j.conbuildmat.2023.134463
Xu, H., Shao, Z., Wang, Z., Cai, L., Li, Z., Jin, H., & Chen, T. (2020). Experimental study on mechanical properties of fiber reinforced concrete: Effect of cellulose fiber, polyvinyl alcohol fiber and polyolefin fiber. Construction And Building Materials, 261, 120610. https://doi.org/10.1016/j.conbuildmat.2020.120610
Zareei, S. A., Ameri, F., Dorostkar, F., & Ahmadi, M. (2017). Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties. Case Studies In Construction Materials, 7, 73-81. https://doi.org/10.1016/j.cscm.2017.05.001
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Revista Científica Pakamuros

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.