Propuesta de sistema adaptativo para intersecciones semaforizadas en la ciudad de Jaén
DOI:
https://doi.org/10.37787/q0stj108Palabras clave:
Sistema adaptativo, intersecciones semaforizadas, algoritmo, programa, demoraResumen
La investigación tuvo como objetivo, realizar la propuesta de un sistema adaptativo para intersecciones semaforizadas en la ciudad de Jaén, basado en algoritmos y ejecución de un programa. El diseño del estudio fue cuantitativa y experimental. Por tanto, se hizo una recolección y análisis de datos de campo y fuentes primarias, para posterior construir algoritmos con la metodología Knowlegde Discovery Databases, pasando a crear una base de información, entrenar y validar con algoritmos de predicción los modelos que incluyó variables seleccionadas, luego predecir tiempos, que clasifican a un nivel de servicio; y finalizar con el desarrollo de un programa usando Visual Studio compatible con los algoritmos generados, todo ello teniendo presente el método Webster y Highway Capacity Manual. Los resultados fueron clasificar intersecciones en su situación actual con demoras de 11.41, 8.32 segundos, y niveles de servicio “B”, “A”; dos modelos de alta precisión empleando el algoritmo RandomForest con R2 de 0.995 y 0.996, prediciendo tiempos de demora y ciclo óptimo; y un programa ejecutable adaptable que calcula y optimiza demoras, ciclos óptimos y niveles de servicios. Se concluye que existe solvencia, por la generación de un sistema adaptativo que estima y mejora la operatividad en una intersección semaforizada.
Referencias
Ali, M. E. M., Durdu, A., Celtek, S. A., & Yilmaz, A. (2021). An Adaptive Method for Traffic Signal Control Based on Fuzzy Logic With Webster and Modified Webster Formula Using SUMO Traffic Simulator. 10.1109/ACCESS.2021.3094270
Alkandari, A., Al-Shaikhli, I. F., & Alhaddad, A. (2014). Optimization of traffic control methods comparing with dynamic webster with Dynamic Cycle Time (DWDC) using simulation software. 2014 10th International Conference on Natural Computation (ICNC), 1071-1076. https://doi.org/10.1109/ICNC.2014.6975989
An, H. K., Awais Javeed, M., Bae, G., Zubair, N., M. Metwally, A. S., Bocchetta, P., Na, F., & Javed, M. S. (2022). Optimized Intersection Signal Timing: An Intelligent Approach-Based Study for Sustainable Models. https://doi.org/10.3390/su141811422
Balaji, P. G., German, X., & Srinivasan, D. (2010). Urban traffic signal control using reinforcement learning agents. IET Intelligent Transport Systems, 4(3), 177. https://doi.org/10.1049/iet-its.2009.0096
Bashiri, M. (2020). Data-Driven Intersection Management Solutions for Mixed Traffic of Human-Driven and Connected and Automated Vehicles. https://doi.org/10.48550/arXiv.2012.05402
Celis-Peñaranda, J. M., Escobar-Amado, C. D., Sepúlveda-Mora, S. B., Castro-Casadiego, S. A., Medina-Delgado, B., & Ramírez-Mateus, J. J. (2016). Control adaptativo para optimizar una intersección semafórica basado en un sistema embebido. https://doi.org/10.17230/ingciencia.12.24.8
Doçi, I., Duraku, R., & Hoti, B. (2022). Design Of Traffic Intersection Model And Regulation With Software And Microcontrollers. https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full1a5_875407.pdf
Jiajia, L., & Xingquan, Z. (2020). Research on Fuzzy Control and Optimization for Traffic Lights at Single Intersection. https://www.china-simulation.com/EN/10.16182/j.issn1004731x.joss.20-FZ0498
Olayode, O. I., Tartibu, L. K., & Okwu, M. O. (2022, enero 25). Application of Adaptive Neuro-Fuzzy Inference System Model on Traffic Flow of Vehicles at a Signalized Road Intersections. ASME 2021 International Mechanical Engineering Congress and Exposition. https://doi.org/10.1115/IMECE2021-70956
Qian, R., Lun, Z., Wenchen, Y., & Meng, Z. (2013). A Traffic Emission-saving Signal Timing Model for Urban Isolated Intersections. Procedia - Social and Behavioral Sciences, 96, 2404-2413. https://doi.org/10.1016/j.sbspro.2013.08.269
Savithramma, R. M., Sumathi, R., & Sudhira, H. S. (2022). A Comparative Analysis of Machine Learning Algorithms in Design Process of Adaptive Traffic Signal Control System. 10.1088/1742-6596/2161/1/012054
Shaikh, P. W., El-Abd, M., Khanafer, M., & Gao, K. (2022). A Review on Swarm Intelligence and Evolutionary Algorithms for Solving the Traffic Signal Control Problem. IEEE Transactions on Intelligent Transportation Systems, 23(1), 48-63. https://doi.org/10.1109/TITS.2020.3014296
Shamlitskiy, Y., Popov, A., Saidov, N., & Moiseeva, K. (2023). Transport Stream Optimization Based on Neural Network Learning Algorithms. Transportation Research Procedia, 68, 417-425. https://doi.org/10.1016/j.trpro.2023.02.056
Shelby, S. G. (2004). Single-Intersection Evaluation of Real-Time Adaptive Traffic Signal Control Algorithms. Transportation Research Record: Journal of the Transportation Research Board, 1867(1), 183-192. https://doi.org/10.3141/1867-21
Wijaya, D. D. A., Luckyarno, Y. F., Utami, S. S., & Prasetyo, R. (2019). Analysis of Vehicle Waiting Time Efficiency Using Webster Method and Newton’s Divided Difference: Case Study at Mirota Kampus Intersection, Yogyakarta, Indonesia.
Zhang, H., Yuan, H., Chen, Y., Yu, W., Wang, C., Wang, J., & Gao, Y. (2021). Traffic Light Optimization Based on Modified Webster Function. Journal of Advanced Transportation, 2021, e3328202. https://doi.org/10.1155/2021/3328202
Publicado
Número
Sección
Licencia
Derechos de autor 2024 Revista Científica Pakamuros
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.