Integración de la automatización en la construcción 4.0
DOI:
https://doi.org/10.37787/va8j6b91Palabras clave:
Construcción 4.0, automatización, bibliometría, robóticaResumen
La integración de la automatización en la construcción 4.0, presenta un análisis detallado de la producción científica sobre la automatización en la construcción 4.0, destacando tendencias y patrones de investigación global. El estudio, comprendido del año 2020, a octubre del año 2024, identifica la tasa de crecimiento anual en publicaciones del 60.69%, reflejando el creciente interés en el tema. A través de indicadores bibliométricos, se reconocen autores influyentes, como Menges A., y revistas influyentes como Automation in Construction y Sustainability (Switzerland). También, países como EE.UU., China y Alemania, lideran la producción científica sobre la automatización en la construcción. La investigación revela que, disciplinas como la robótica y la automatización, contribuyen un enfoque multidimensional. El desarrollo semántico destaca la relevancia de términos como “construction 4.0” y “robotics”, mientras que los temas emergentes incluyen la impresión 3D y la fabricación robótica.
Referencias
Abkar, M. M. A., Yunus, R., Al-Shameri, A. S. A. S., Harouache, A., & Gamil, Y. (2023). An empirical investigation of automation technology as material waste mitigation measure at Johor construction sites. Frontiers in Built Environment, 9, 1232195. https://doi.org/10.3389/fbuil.2023.1232195
Adami, P., Rodrigues, P. B., Woods, P. J., Becerik-Gerber, B., Soibelman, L., Copur-Gencturk, Y., & Lucas, G. (2021). Effectiveness of VR-based training on improving construction workers’ knowledge, skills, and safety behavior in robotic teleoperation. Advanced Engineering Informatics, 50, 101431. https://doi.org/10.1016/j.aei.2021.101431
Aghimien, D., Ikuabe, M., Aghimien, L. M., Aigbavboa, C., Ngcobo, N., & Yankah, J. (2024). PLS-SEM assessment of the impediments of robotics and automation deployment for effective construction health and safety. Journal of Facilities Management, 22(3), 458-478. https://doi.org/10.1108/JFM-04-2022-0037
Agrawal, A. K., Zou, Y., Chen, L., Abdelmegid, M. A., & González, V. A. (2024). Moving toward lean construction through automation of planning and control in last planner system: A systematic literature review. Developments in the Built Environment, 18, 100419. https://doi.org/10.1016/j.dibe.2024.100419
Barrios Serna, K. V., Orozco Núñez, D. M., Pérez Navas, E. C., & Conde Cardona, G. (2021). Nuevas recomendaciones de la versión PRISMA 2020 para revisiones sistemáticas y metaanálisis. Acta Neurológica Colombiana, 37(2), 105-106. https://doi.org/10.22379/24224022373
Bibliometrix. (2023). Bibliometrix—Home. https://www.bibliometrix.org/home/
Bruun, E. P. G., Pastrana, R., Paris, V., Beghini, A., Pizzigoni, A., Parascho, S., & Adriaenssens, S. (2021). Three cooperative robotic fabrication methods for the scaffold-free construction of a masonry arch. Automation in Construction, 129, 103803. https://doi.org/10.1016/j.autcon.2021.103803
Chai, H., Wagner, H. J., Guo, Z., Qi, Y., Menges, A., & Yuan, P. F. (2022). Computational design and on-site mobile robotic construction of an adaptive reinforcement beam network for cross-laminated timber slab panels. Automation in Construction, 142, 104536. https://doi.org/10.1016/j.autcon.2022.104536
Chea, C. P., Bai, Y., & Zhou, Z. (2024). Design and development of robotic collaborative system for automated construction of reciprocal frame structures. Computer-Aided Civil and Infrastructure Engineering, 39(10), 1550-1569. https://doi.org/10.1111/mice.13145
Codarin, S. (2023). Enhancing the workforce in construction: Robotic concrete printing in Detroit. TECHNE - Journal of Technology for Architecture and Environment, 25, 233-242. https://doi.org/10.36253/techne-13704
Cuevas Molano, E., Sánchez Cid, M., & Matosas-López, L. (2019). Análisis bibliométrico de estudios sobre la estrategia de contenidos de marca en los medios sociales. Comunicación y Sociedad, 1-25. https://doi.org/10.32870/cys.v2019i0.7441
Davila Delgado, Manuel, J. M., & Oyedele, L. (2022). Robotics in construction: A critical review of the reinforcement learning and imitation learning paradigms. Advanced Engineering Informatics, 54, 101787. https://doi.org/10.1016/j.aei.2022.101787
Faltein, S. A., & Sukdeo, N. I. (2024). Culture-driven quality enhancement: Uncovering the impact of robotics integration in the South African construction sector. Ain Shams Engineering Journal, 15(6), 102728. https://doi.org/10.1016/j.asej.2024.102728
Feldmann, F. G. (2022). Towards Lean Automation in Construction—Exploring Barriers to Implementing Automation in Prefabrication. Sustainability, 14(19), 12944. https://doi.org/10.3390/su141912944
Follini, C., Magnago, V., Freitag, K., Terzer, M., Marcher, C., Riedl, M., Giusti, A., & Matt, D. T. (2020). BIM-Integrated Collaborative Robotics for Application in Building Construction and Maintenance. Robotics, 10(1), 2. https://doi.org/10.3390/robotics10010002
Hiramatsu, T., Saiki, M., Hara, N., Yamada, M., & Sugiura, H. (2024). Study of Force Control for Construction Automation. Journal of Robotics and Mechatronics, 36(2), 284-293. https://doi.org/10.20965/jrm.2024.p0284
Hoffmann, M., Skibicki, S., Pankratow, P., Zieliński, A., Pajor, M., & Techman, M. (2020). Automation in the Construction of a 3D-Printed Concrete Wall with the Use of a Lintel Gripper. Materials, 13(8), 1800. https://doi.org/10.3390/ma13081800
Kajzr, D., Brousek, J., Petr, T., Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Faculty of Mechanical Engineering, Technical university of Liberec, Liberec, Czech Republic, Beran, L., Diblik, M., & Vozenilek, R. (2021). New design of Plc-Based Robotic Control System for Concrete Printing in Building Construction. MM Science Journal, 2021(6), 5346-5352. https://doi.org/10.17973/MMSJ.2021_12_2021051
Kavaliauskas, P., Fernandez, J. B., McGuinness, K., & Jurelionis, A. (2022). Automation of Construction Progress Monitoring by Integrating 3D Point Cloud Data with an IFC-Based BIM Model. Buildings, 12(10), 1754. https://doi.org/10.3390/buildings12101754
Khaleel, A., & Naimi, S. (2022). Automation of cost control process in construction project building information modeling (BIM). Periodicals of Engineering and Natural Sciences (PEN), 10(6), 28. https://doi.org/10.21533/pen.v10i6.3354
Khosravani, M. R., & Haghighi, A. (2022). Large-Scale Automated Additive Construction: Overview, Robotic Solutions, Sustainability, and Future Prospect. Sustainability, 14(15), 9782. https://doi.org/10.3390/su14159782
Kim, T., Lee, D., Lim, H., Lee, U.-K., Cho, H., & Cho, K. (2021). Exploring research trends and network characteristics in construction automation and robotics based on keyword network analysis. Journal of Asian Architecture and Building Engineering, 20(4), 442-457. https://doi.org/10.1080/13467581.2020.1798774
Lai, Z., Xiao, Y., Chen, Z., Li, H., & Huang, L. (2024). Preserving Woodcraft in the Digital Age: A Meta-Model-Based Robotic Approach for Sustainable Timber Construction. Buildings, 14(9), 2900. https://doi.org/10.3390/buildings14092900
Leder, S., Kim, H., Oguz, O. S., Kubail Kalousdian, N., Hartmann, V. N., Menges, A., Toussaint, M., & Sitti, M. (2022). Leveraging Building Material as Part of the In‐Plane Robotic Kinematic System for Collective Construction. Advanced Science, 9(24), 2201524. https://doi.org/10.1002/advs.202201524
Leder, S., Kim, H., Sitti, M., & Menges, A. (2024). Enhanced co-design and evaluation of a collective robotic construction system for the assembly of large-scale in-plane timber structures. Automation in Construction, 162, 105390. https://doi.org/10.1016/j.autcon.2024.105390
Leder, S., & Menges, A. (2024). Merging architectural design and robotic planning using interactive agent-based modelling for collective robotic construction. Journal of Computational Design and Engineering, 11(2), 253-268. https://doi.org/10.1093/jcde/qwae028
Li, H. (2021). Application and Analysis of Internet and Information Technology in Higher Education Computer Teaching. 2021 4th International Conference on Information Systems and Computer Aided Education, 843-846. https://doi.org/10.1145/3482632.3483033
Liu, Y., Alias, A. H. B., Haron, N. A., Bakar, N. A., & Wang, H. (2024). Technology status tracing and trends in construction robotics: A patent analysis. World Patent Information, 76, 102259. https://doi.org/10.1016/j.wpi.2023.102259
Liu, Y., Belousov, B., Schneider, T., Harsono, K., Cheng, T.-W., Shih, S.-G., Tessmann, O., & Peters, J. (2024). Advancing Sustainable Construction: Discrete Modular Systems & Robotic Assembly. Sustainability, 16(15), 6678. https://doi.org/10.3390/su16156678
Marcher, C., Giusti, A., & Matt, D. T. (2021). On the Design of a Decision Support System for Robotic Equipment Adoption in Construction Processes. Applied Sciences, 11(23), 11415. https://doi.org/10.3390/app112311415
Naranjo, J. E., Valle, A., Cruz, A., Martín, M., Anguera, M., García, P., & Jiménez, F. (2023). Automation of haulers for debris removal in tunnel construction. Computer-Aided Civil and Infrastructure Engineering, 38(14), 2030-2045. https://doi.org/10.1111/mice.12997
Park, E. S., Seo, H. C., & Lee, A. Y. (2022). Development of a Multi-Layer Marking Toolkit for Layout-Printing Automation at Construction Sites. Sensors, 22(13), 4822. https://doi.org/10.3390/s22134822
Park, J. K., & Lee, K. W. (2022). Efficiency Analysis of Construction Automation Using 3D Geospatial Information. Sensors and Materials, 34(1), 415. https://doi.org/10.18494/SAM3707
Park, S., Wang, X., Menassa, C. C., Kamat, V. R., & Chai, J. Y. (2024). Natural language instructions for intuitive human interaction with robotic assistants in field construction work. Automation in Construction, 161, 105345. https://doi.org/10.1016/j.autcon.2024.105345
Pereira Da Silva, N., Eloy, S., & Resende, R. (2022). Robotic construction analysis: Simulation with virtual reality. Heliyon, 8(10), e11039. https://doi.org/10.1016/j.heliyon.2022.e11039
Prieto, S. A., Giakoumidis, N., & García De Soto, B. (2024). Multiagent robotic systems and exploration algorithms: Applications for data collection in construction sites. Journal of Field Robotics, 41(4), 1187-1203. https://doi.org/10.1002/rob.22316
Prieto, S. A., Xu, X., & García De Soto, B. (2024). A guide for construction practitioners to integrate robotic systems in their construction applications. Frontiers in Built Environment, 10, 1307728. https://doi.org/10.3389/fbuil.2024.1307728
Rada, A. O., Kuznetsov, A. D., Zverev, R. E., & Timofeev, A. E. (2023). Automation of monitoring construction works based on laser scanning from unmanned aerial vehicles. Nanotechnologies in Construction A Scientific Internet-Journal, 15(4), 373-382. https://doi.org/10.15828/2075-8545-2023-15-4-373-382
Rehman, A. U., Kim, I.-G., & Kim, J.-H. (2024). Towards full automation in 3D concrete printing construction: Development of an automated and inline sensor-printer integrated instrument for in-situ assessment of structural build-up and quality of concrete. Developments in the Built Environment, 17, 100344. https://doi.org/10.1016/j.dibe.2024.100344
Saini, G. S., Erge, O., Ashok, P., & Van Oort, E. (2022). Well Construction Action Planning and Automation through Finite-Horizon Sequential Decision-Making. Energies, 15(16), 5776. https://doi.org/10.3390/en15165776
Saini, G. S., Pournazari, P., Ashok, P., & Van Oort, E. (2022). Intelligent Action Planning for Well Construction Operations Demonstrated for Hole Cleaning Optimization and Automation. Energies, 15(15), 5749. https://doi.org/10.3390/en15155749
Spinner, A., & Degani, A. (2024). Online as-Built Building Information Model Update for Robotic Monitoring in Construction Sites. Journal of Intelligent & Robotic Systems, 110(2), 50. https://doi.org/10.1007/s10846-024-02087-2
Vidovszky, I., & Szögi, T. (2024). Az építésautomatizálás technológiai lehetőségei: Az ipar 4.0 szemlélet kibontakozása az építőiparban. Építés – Építészettudomány, 52(1-2), 105-123. https://doi.org/10.1556/096.2024.00108
VOSviewer. (2023). VOSviewer—Visualizing scientific landscapes. https://www.vosviewer.com/
Wagner, H. J., Alvarez, M., Kyjanek, O., Bhiri, Z., Buck, M., & Menges, A. (2020). Flexible and transportable robotic timber construction platform – TIM. Automation in Construction, 120, 103400. https://doi.org/10.1016/j.autcon.2020.103400
Wang, Y., Lu, H., Wang, Y., Yang, Z., Wang, Q., & Zhang, H. (2024). A hybrid building information modeling and collaboration platform for automation system in smart construction. Alexandria Engineering Journal, 88, 80-90. https://doi.org/10.1016/j.aej.2024.01.013
Waqar, A., Alrasheed, K. A., & Benjeddou, O. (2024). Enhancing construction management outcomes through the mitigation of robotics implementation barriers: A sustainable practice model. Environmental Challenges, 16, 100989. https://doi.org/10.1016/j.envc.2024.100989
Wong Chong, O., Zhang, J., Voyles, R. M., & Min, B.-C. (2022). BIM-based simulation of construction robotics in the assembly process of wood frames. Automation in Construction, 137, 104194. https://doi.org/10.1016/j.autcon.2022.104194
Xu, W., Huang, S., Han, D., Zhang, Z., Gao, Y., Feng, P., & Zhang, D. (2022). Toward automated construction: The design-to-printing workflow for a robotic in-situ 3D printed house. Case Studies in Construction Materials, 17, e01442. https://doi.org/10.1016/j.cscm.2022.e01442
Yankah, J. E., Adjei, K. O., & Tieru, C. K. (2024). Apps as partial replacement for robotics and automation systems in construction health and safety management. Frontiers in Engineering and Built Environment, 4(2), 90-100. https://doi.org/10.1108/FEBE-07-2023-0033
Zhang, Y., Meina, A., Lin, X., Zhang, K., & Xu, Z. (2021). Digital Twin in Computational Design and Robotic Construction of Wooden Architecture. Advances in Civil Engineering, 2021(1), 8898997. https://doi.org/10.1155/2021/8898997
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Revista Científica Pakamuros

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.