Estabilización microbiológica de leche fresca de vaca (Bos taurus) por pre tratamiento ultrasónico y tratamiento térmico de baja temperatura

Autores/as

DOI:

https://doi.org/10.37787/6x1h5q49

Palabras clave:

Leche, ultrasonidos, pasterización, Bigelow, inativación microbiana

Resumen

La presente investigación experimental aplicada tuvo por objetivo evaluar la estabilización microbiana de leche fresca pre sonicada por tratamiento térmicos de baja temperatura (≤60 °C), para reducir su perecibilidad. La leche fresca fue sonicada con una densidad energética de 0.5 kJ/mL antes de ser tratada térmicamente a baja temperatura (40 a 60 °C) por diferentes tiempos; la leche pre sonicada y tratada térmicamente fue evaluada en su contenido de Aerobios Mesófilos Totales (AMV) y Coliformes Totales (CT), y el efecto del tratamiento sobre las poblaciones microbianas fue modelado usando el Modelo de Bigelow. Se determinó que los tratamientos entre 40 y 45 °C generaron incrementos poblacionales; pero que tratamientos encima de los 55.04 °C para AMV y de 49.28 °C para CT iniciaron procesos de inactivación microbiana, siendo ambas temperaturas las más bajas temperaturas de inactivación reportadas hasta el momento para leche fresca. El aumento de la sensibilidad térmica estaría ligada a la producción de daño sub letal a las células de AMV y CT, lo que permitiría estabilizar microbiológicamente leche fresca a más bajas temperaturas reduciendo los efectos deletéreos de los tratamientos térmicos.

Biografía del autor/a

  • Miguel Angel Solano-Cornejo, Universidad Nacional Pedro Ruiz Gallo

    Ingeniero en Industrias Alimentarias (Universidad Nacional Agraria La Molina), Magister en Ingeniería Ambiental y Seguridad Industrial (Universidad Nacional de Piura), Candidato a Doctor en Ingenieria de Alimentos (Universidad Nacional de Santa). Docente en la Escuela Profesional de Industrias Alimentarias de la Universidad Nacional Pedro Ruiz Gallo en Lambayeque. Docente en la Escuela de Ingenieria Agroindustrial de la Universidad Señor de Sipan. Productor Certificado de Frutas y Vegetales Frescos para USA por la Association of Food & Drug Officials (USA) (Grower ID Number 142378). Asesor en Industrias Alimentarias para el diseño y desarrollo de Productos, Procesos y Plantas de Alimentos. Revisor Científico para el Food and Bioproducts Processing (Journal Clase Q1 de la Casa Editorial Elsevier).Campo de Investigación Preservación de Alimentos, Modelamiento y Cinética de Deterioro y Vida Útil, Inocuidad de Alimentos, Microbiología de Inocuidad de Alimentos y Ambiental, Diseño de Plantas y Procesos en alimentos frescos y procesados.

Referencias

Abdullah, S. N., You, K. Y., Khamis, N. H., & Cheong Y, C. (2019). Modelling the Dielectric Properties of Cow’s Raw Milk under Vat Pasteurization. Progress In Electromagnetics Research Materials, 84, 157–166.

Chen, F., Zhang, M., & Yang, C. hui. (2020). Application of ultrasound technology in processing of ready-to-eat fresh food: A review. In Ultrasonics Sonochemistry (Vol. 63). https://doi.org/10.1016/j.ultsonch.2019.104953

D’Incecco, P., Limbo, S., Hogenboom, J. A., & Pellegrino, L. (2021). Novel technologies for extending the shelf life of drinking milk: Concepts, research trends and current applications. Lwt, 148(May), 111746. https://doi.org/10.1016/j.lwt.2021.111746

Dash, K. K., Fayaz, U., Dar, A. H., Shams, R., Manzoor, S., Sundarsingh, A., Deka, P., & Khan, S. A. (2022). A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products. Food Chemistry Advances, 1(May), 100041. https://doi.org/10.1016/j.focha.2022.100041

de Oliveira, G. B., Favarin, L., Luchese, R. H., & McIntosh, D. (2015). Psychrotrophic bacteria in milk: How much do we really know? Brazilian Journal of Microbiology, 46(2), 313–321. https://doi.org/10.1590/S1517-838246220130963

Feng, P., Weagant, S. D., & Grant, M. A. (2021). BAM Chapter 4: Enumeration of Escherichia coli and the Coliform Bacteria. Bacteriological Analytical Manual (BAM). https://www.fda.gov/food/laboratory-methods-food/bam-chapter-4-enumeration-escherichia-coli-and-coliform-bacteria

Jiménez-Sánchez, C., Lozano-Sánchez, J., Segura-Carretero, A., & Fernández-Gutiérrez, A. (2017). Alternatives to conventional thermal treatments in fruit-juice processing. Part 1: Techniques and applications. Critical Reviews in Food Science and Nutrition, 57(3), 501–523. https://doi.org/10.1080/10408398.2013.867828

Juraga, E., Vukušić Pavičić, T., Gajdoš Kljusurić, J., Brnčić, M., Juraga, T., & Herceg, Z. (2021). Properties of milk treated with high-power ultrasound and bactofugation. Food Technology and Biotechnology, 59(1), 92–102. https://doi.org/10.17113/ftb.59.01.21.6721

Ksontini, H., Kachouri, F., & Hamdi, M. (2011). Microflora distribution and assessment of microbiological quality milk from Tunisian collection centres. African Journal of Microbiology Research, 5(12), 1484–1491.

Lemma, F., Alemayehu, H., Stringer, A., & Eguale, T. (2021). Prevalence and Antimicrobial Susceptibility Profile of Staphylococcus aureus in Milk and Traditionally Processed Dairy Products in Addis Ababa, Ethiopia. BioMed Research International, 2021. https://doi.org/10.1155/2021/5576873

Liao, X., Li, J., Suo, Y., Chen, S., Ye, X., Liu, D., & Ding, T. (2018). Multiple action sites of ultrasound on Escherichia coli and Staphylococcus aureus. Food Science and Human Wellness, 7(1), 102–109. https://doi.org/10.1016/j.fshw.2018.01.002

Lim, S. Y., Benner, L. C., & Clark, S. (2019). Neither thermosonication nor cold sonication is better than pasteurization for milk shelf life. Journal of Dairy Science, 102(5), 3965–3977. https://doi.org/10.3168/jds.2018-15347

Marchesini, G., Fasolato, L., Novelli, E., Balzan, S., Contiero, B., Montemurro, F., Andrighetto, I., & Segato, S. (2015). Ultrasonic inactivation of microorganisms: A compromise between lethal capacity and sensory quality of milk. Innovative Food Science and Emerging Technologies, 29, 215–221. https://doi.org/10.1016/j.ifset.2015.03.015

Maturin, L., & Peeler, J. T. (2021). BAM Chapter 3: Aerobic Plate Count. Bacteriological Analytical Manual (BAM). https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count

Myer, P. R., Parker, K. R., Kanach, A. T., Zhu, T., Morgan, M. T., & Applegate, B. M. (2016). The effect of a novel low temperature-short time (LTST) process to extend the shelf-life of fluid milk. SpringerPlus, 5(1), 1–12. https://doi.org/10.1186/s40064-016-2250-1

Peng, S., Hummerjohann, J., Stephan, R., & Hammer, P. (2013). Short communication: Heat resistance of Escherichia coli strains in raw milk at different subpasteurization conditions. Journal of Dairy Science, 96(6), 3543–3546. https://doi.org/10.3168/jds.2012-6174

Ribeiro-Júnior, J. C., Tamanini, R., Alfieri, A. A., & Beloti, V. (2020). Effect of milk bactofugation on the counts and diversity of thermoduric bacteria. Journal of Dairy Science, 103(10), 8782–8790. https://doi.org/10.3168/jds.2020-18591

Sarkar, S. (2015). Microbiological considerations: Pasteurized milk. International Journal of Dairy Science, 10(5), 206–218. https://doi.org/10.3923/ijds.2015.206.218

Solano-Cornejo, M. A. (2013). Modelamiento de la cinética de desinfección superficial de tomates (Lycopersicum esculentum) frescos usando soluciones de cloro Modeling surface disinfection kinetics of fresh tomato (Lycopersicum esculentum) using chlorine solutions Scientia Agropecuaria. Scienta Agropecuaria, 4, 27–35.

Soltani, M., Sardari, H., Soofiabadi, M., & Hosseinpour, S. (2022). Ultrasound assisted processing of milk: Advances and challenges. Journal of Food Process Engineering, July, 1–20. https://doi.org/10.1111/jfpe.14173

Wang, Y., Han, X., Chen, X., & Deng, Y. (2021). Potential harmful of extracellular proteases secreted by Pseudomonas fluorescens W3 on milk quality. Journal of Food Processing and Preservation, 45(3), 1–8. https://doi.org/10.1111/jfpp.15192

Wei, X., Lau, S. K., Chaves, B. D., Danao, M. G. C., Agarwal, S., & Subbiah, J. (2020). Effect of water activity on the thermal inactivation kinetics of Salmonella in milk powders. Journal of Dairy Science, 103(8), 6904–6917. https://doi.org/10.3168/jds.2020-18298

Yu, T., Zhang, X., Feng, R., Wang, C., Wang, X., & Wang, Y. (2022). Comparison of the Effects of High Hydrostatic Pressure and Pasteurization on Quality of Milk during Storage. Foods, 11(18), 1–19. https://doi.org/10.3390/foods11182837

Publicado

2024-03-27

Declaración de disponibilidad de datos

Declaramos bajo juramento que ponemos a disposición del público los datos de la investigación para que puedan ser accedidos por los lectores/as.

Número

Sección

Artículos Originales

Cómo citar

Solano-Cornejo, M. A. (2024). Estabilización microbiológica de leche fresca de vaca (Bos taurus) por pre tratamiento ultrasónico y tratamiento térmico de baja temperatura. Revista Científica Pakamuros, 12(1), 91-104. https://doi.org/10.37787/6x1h5q49

Artículos similares

También puede Iniciar una búsqueda de similitud avanzada para este artículo.